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High-dimensional classification approaches have been widely used to investigate magnetic resonance
imaging (MRI) data for automatic classification of Alzheimer’s disease (AD). This paper describes the use of
t-test based feature-ranking approach as part of a novel feature selection procedure, where the number of
top features is determined using the Fisher Criterion. The proposed classification system involves five
systematic levels. First, voxel-based morphometry technique is used to compare the global and local
differences of gray matter in patients with AD versus healthy controls (HCs). The significant local
differences in gray matter volume are then selected as volumes of interests (VOIs). Second, the voxel
clusters are employed as VOIs, where each voxel is considered to be a feature. Third, all the features are
ranked using t-test scores. In this regard, the Fisher Criterion between the AD and HC groups is calculated
for a changing number of ranked features, where the vector size maximizing the Fisher Criterion is selected
as the optimal number of top discriminative features. Fourth, the classification is performed using support
vector machine. Finally, data fusion methods among atrophy clusters are used to improve the classification
performance. The experimental results indicate that the performance of the proposed system could
compete well with the state-of-the-art techniques reported in the literature.
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1. Introduction

Alzheimer’s disease (AD), an irreversible neurodegenerative demen-
tia that occurs most frequently in older adults, gradually destroys
regions of the brain that are responsible for memory, learning, thinking,
and behavior [1]. Current estimates indicate that 5.3 million Americans
of all ages will suffer from AD in 2015. This number is expected to
increase to 16million people by 2050. AD is the only disease among the
top ten causes of death in Americans that cannot be cured, prevented, or
slowed. [1] Presently, no cure exists for AD, but early detection may aid
in determining the root of AD mechanisms and improve the quality of
life for patients who suffer from AD [1]. In recent years, the analysis of
neuroimaging data has attracted much interest, given the recent
improvements in early and accurate detection of AD [2,3]. Among the
several available neuroimagingmodalities,magnetic resonance imaging
(MRI) is more widely used in AD related studies because of its excellent
spatial resolution, high availability, good contrast, and the lack of a
requirement for the radioactive pharmaceutical injection that is needed
with positron emission tomography (PET) or single photon emission
computed tomography (SPECT) [4–7]. Recently, several studies have
used biomarkers to classify AD based on structural MRI [8–15], which
can be utilized to specify brain atrophy; functional MRI [16–18], which
can be employed to describe hemodynamic response relevant to neural
activity; diffusion tensor imaging [19–21], which can be used for local
microstructural characteristics of water diffusion; and functional/
structural connectivity [22–24], which can be used to characterize
neurological disorders in thewholebrain at the connectivity level. In this
paper, we focused only on AD classification using structural MRI.
Atrophy measured by structural MRI is a powerful biomarker of the
stage and intensity of the neurodegenerative aspect of AD pathology
[25]. Several studies have used structural MRI feature extraction for AD
classification. These studies are variously based on morphometric
methods [26–28], region of interest (ROI)/volume of interest (VOI)
[29–31], gray matter voxels in the automatic segmentation of
images [32], and structural MRI measurement of the hippocampus
and themedial temporal lobe [33–39]. Despite the recent improvements
in early detection of AD, the prediction of disease progression using
structural MRI alone remains challenging and requires more investiga-
tion. The present study describes the use of a statistical feature ranking
approach using t-test as part of a novel feature selection process. The
number of highest ranking features selected is determined by using the
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Fisher Criterion, whichmaximizes the class separation between AD and
HC groups.

The Fisher Criterion aids in finding an optimal number of features
with themost discriminative information for the classification process.
The proposed feature selection method is applied to different atrophy
clusters of voxels, which correspond to the volumes of interest (VOIs)
in the gray matter of the MRI obtained through the voxel-based
morphometry (VBM) analysis in the preprocessing. In this context,
data fusion is introduced to increase the classification performance,
which utilizes a majority-voting-based score fusion and a feature
vector concatenation-based source fusion. In the proposed system, we
use only MRI data, unlike several recent studies where MRI is
combined with other different data such as PET, Cognitive Scores,
and Mini Mental State Examination (MMSE) to increase the classifier
performance [8,12,40,41]. The proposed system is accomplishedby the
systematic use of several ideas at five levels. At the first level, the VBM
technique is employed to analyze group-wise comparisons between
cross-sectional structural MRI scans, in order to find the MRI voxels
that are best discriminated between the AD group and the HC group
[14,42–44]. The inter-subject registration of the MRI images is
promoted by employing the Diffeomorphic Anatomic Registration
Through Exponentiated Lie algebra algorithm (DARTEL) [44]. This
algorithm provides precise, accurate localization of structural damage
of the MRI images [43,44]. Based on the VBM plus DARTEL approach,
the overall and regional structural gray matter alterations are
investigated to define regions with significant atrophy of gray matter
in the patients who suffer from AD. The results obtained from 68
patients with AD, when compared to 68 HCs, show significant gray
matter decline in right/left hippocampuses and in the inferior parietal
and anterior cingulate regions in patients with AD. Instead of making a
single global classifier, the multiple individual classifiers based on
atrophy clusters obtained using VBM plus DARTEL analysis are
proposed for use with data fusion techniques for more accurate
classification. Based on these clusters, five different VOIs are defined as
follows: 1) VOI1 includes the right hippocampus region, 2) VOI2
includes the left hippocampus region, 3) VOI3 contains the right
inferior parietal lobule region, 4) VOI4 includes the right anterior
cingulate region, and 5) VOIall contains an accumulation of all atrophy
cluster regions. At the second level, specifiedVOIs are usedas3Dmasks
to extract voxel values from the VOIs to generate raw feature vectors.
These raw feature vectors can be used in the data selection processes
before use by the classifiers. At the third level, the extracted features
are systematically ranked, based on the t-test values of the respective
features obtained from the training set. The t-test can be considered as
a statistical indicator showing the level of separation/discrimination
between two groups (AD and HC) in the training set. For this reason,
ranking according to the t-test, followed by the use of a subset of
highest ranking features, would increase the classification perfor-
mance. The t-test feature ranking has been used successfully in a
number of pattern recognitions studies [45–47]. In addition, an
automatic approach based on the Fisher Criterion is proposed to
determine the number of top features. This approach adaptively
determines the optimum number of top features and identifies a
discriminative subset of high performance features based on training
data in each fold, instead of using a fixed number of features. At the
fourth level, the performance of the proposed feature selection
technique is evaluated using support vectormachine (SVM) classifiers.
In the present work, the SVM classifier with both linear (linear SVM)
and nonlinear (RBF SVM) kernels is trained to discriminate between
the classes. In the final level, data fusion techniques among atrophy
clusters (VOIs) are proposed to increase the overall performance. Data
fusion improves the classification performance by integrating data
(vectors, classifiers) from different atrophy clusters. To this purpose,
source and score data fusion techniques were used to achieve higher
performance. A direct comparison shows that the experimental results
using the proposed t-test feature selection and data fusion-based
approach indicate superior performancewhen compared to classifiers
that use all raw features and a data reduction method involving
principal component analysis (PCA). In summary, the aim of this study
was to introduce a novel and automatic statistical feature selection
method based on the combination of t-test feature ranking and
the Fisher Criterion of the VOI, which can be considered a lower-
dimensional feature vector representation of sMRI. The dimensionality
of the feature vector can be adjusted by maximizing the Fisher
Criterion in the training data-set. The proposed feature selection
method not only selects the top discriminative features but also
reduces the dimensionality of the input vectors to feature vectors. In
addition, data fusion techniques are used to improve the AD
classification performance among gray matter atrophy clusters. The
performance of the proposed system is tested on 136 subjects
(including 68 AD and 68 HC) from an ADNI dataset using 10-fold
cross validation. The experimental results, when compared to those
obtained with state-of-the-art techniques, show that the proposed
system is highly competitive in terms of accuracy (96.32%), specificity
(98.52%), and AUC (99.93%) for AD classification. The rest of this paper
is arranged as follows: Section two gives the statistics for the data used
in thiswork. Section three describes theproposedmethodology for the
design of an automatic, high performanceAD classification system. The
experimental results, discussion, and analysis of the proposed system
in comparison to the state-of-the-art classification methods are given
in section four. Section five presents some conclusions.

2. Material

2.1. Image acquisition

MR images and data used in this work were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu/ADNI). The MRI scans were acquired using a 3 T,
T1-weighted scanner (Siemens) with Acquisition Plane = SAGITTAL,
Acquisition Type = 3D, Coil = Phased Arrays(PA), Flip Angle = 9.0°,
Matrix X/Y/Z = 240.0 pixels/256 pixels/176 pixels, Mfg Model =
Skyra, Pixel Spacing X/Y = 1.0 mm/1.0 mm, Pulse Sequence =
Gradient Recalled(GR)/Inversion Recovery(IR), Slice Thickness =
1.2 mm, and Echo Time (TE)/Inversion Time (TI)/Repetition Time
(TR) = 2.98 ms/900 ms/2300 ms.

2.2. Subjects

The diagnostic classification was conducted by selecting a total of
136 subjects from the ADNI database and grouping them as AD and
HC. The AD group contained 68 subjects ranging in age from 61.4 to
89.2 (74.33 ± 6.41) years. The Mini Mental State Examination
(MMSE) and Clinical Dementia Ratio (CDR) scores ranged from 15 to
25 (mean 22.83 ± 2.65) and 0.5 to2 (mean 0.75 ± 0.41), respec-
tively. The HC group contained 68 healthy controls ranging in age
from 60.8 to 84.4 (74.14 ± 4.95) years. TheMMSE ranged from 28 to
30(mean 29.38 ± 0.71) and the CDR was zero. A direct comparison
revealed that the AD patients’ mean MMSE and CDR were
significantly distinct when compared to the HC subjects. No
significant group differences were noted in age or sex ratio. Details
of the demographics and clinical characteristics of the sample used in
this paper are presented in Table 1.

3. Proposed AD classification system

This section proposed a new AD classification system using a novel
approach based on a combination of t-test feature ranking and the
Fisher Criterion for the optimal selection of feature vectors for high
performanceMRI classification of AD. The system involvesfive levels of
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Table 1
Demographic and clinical details of the patients with AD and HC subjects.

AD (n = 68) HC (n = 68) t-value M.D

Age 74.33 ± 6.41 74.14 ± 4.95 0.19 0.18NS

MMSE 22.83 ± 2.56 29.38 ± 0.71 14.76 −6.5⁎

CDR[0/0.5/1/2] 0.75 ± 0.41 [0/44/19/5] 0.0 ± 0 [68/0/0/0] −20.26 0.75⁎

Note: All data presented in mean ± standard deviation mode. AD, Alzheimer’
Disease patients; CDR, Clinical Dementia Rating; HC, Healthy Control patients; MMSE
Mini-Mental State Examination; MD, Mean Difference; NS, Non-Significant.

∗ P b 0.0001.
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s
,

processing. The pipeline of the proposed system is illustrated in Fig. 1.
First, the VBM plus DARTEL approach is employed to perform
pre-processing on 3D MRI data. Second, a feature extraction method
is used, based on VBM plus DARTEL analysis. Third, the extracted
features are ranked based on the t-test values of the respective
features, in the training set. In addition, an automatic approach based
on the Fisher Criterion is adopted to determine the number of top
ranking features. This approach adaptively determines the optimum
number of top features and identifies a discriminative subset of high
performance features based on training data in each fold. Hence, the
feature vectors taken from VOIs of high dimensional s-MRI data are
reduced into a low dimensional space, with improved discrimination
capability. Fourth, the proposed technique is evaluated using
state-of-the-art SVM classifiers. The performance analysis comprises
an experimental setup based on 136 samples from the ADNI dataset. A
10-fold cross validation is employed throughout the performance
analysis, which implies having 122 (90%) samples in the training and
14(10%) samples in the testing processes in each iteration. Finally, data
fusion techniques among atrophy clusters are engaged to improve the
classification performance.
3.1. MRI data preprocessing and statistical analysis

The MR images are pre-processed using the Statistical Parameter
Mapping (SPM) software version 8 (Welcome Trust Centre for
Neuroimaging, London, UK; available at: http://www.fil.ion.ucl.ac.uk/
spm) and the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm),
sion
y clu

sion

posed
implemented in MATLAB R2014a. VBM is an automated technique
for assessment of the whole brain structure with voxel-by-voxel
comparisons, developed to analyze tissue concentrations or volumes
between subject groups for distinguishing degenerative diseases
with dementia [42,43]. In more detail, VBM techniques investigate
structural differences in areaswith poorly defined structural landmarks
(e.g., prefrontal areas) and provide explorative analysis of structural
differences [48–50]. Recently, VBM has been applied to detect early
atrophic changes in AD [44,51–53]. It can provide statistical results for
comparisons of patients with AD and HCs [44]. The inter-subject
alignment of the MRI images was increased by applying the DARTEL
approach, which has been reported to optimize the sensitivity of this
type of analysis over standard VBM by using the Levenberg–Marquardt
strategy [49,54–57]. Moreover, the VBM8 toolbox benefits from the
unified segmentation model with a maximum a posterior (MAP)
technique [58] and partial volume estimation (PVE) to account for
partial volume effects [59], which results in amore subtle segmentation
of subcortical areas. In addition, the VBM toolbox uses a spatially
adaptive nonlocal means (SANLM) filter for denoising and removal of
MRI in homogeneities [60]. The signal-to-noise ratio is improved by
employing a spatial constraint based on a classicalMarkov randomfield
(MRF) model [61]. Registration to a standard MNI-space (http://www.
mni.mcgill.ca/) consists of a linear affine transformation and anonlinear
deformation using high-dimensional DARTEL normalization [55].

In the current work, sample homogeneity prior to calculating 2nd
level analyses is ensured by inspecting the quality of gray matter
images using the VBM8 toolbox. All MR images are corrected for bias
field in homogeneities and then they are normalized and segmented
into gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). The normalized and segmented images are modulated using a
nonlinear deformation. In this work, only GM images are used. Finally,
the 8 mm full-width-half-maximum (FWHM) Gaussian kernel is used
for spatial smoothing of the GM images. After spatial pre-processing,
the normalized, smoothed, modulated, DARTEL-warped gray matter
datasets are analyzed using a voxel-wise parametric mapping. The
absolute threshold masking of around 0.1 is used to avoid possible
edge effects around the border between graymatter andwhite matter
or CSF.

The regional gray matter volume changes are generated by
voxel-based analysis over the whole brain. The framework of the
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on VBM analysis
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general linearmodel is employed to detect graymatter volume changes
in patients with AD using voxel-wise two sample t-test in SPM8. Age is
engaged into the matrix design as a nuisance variable. The whole brain
analysis is implemented using significance set at a P value of b0.01,with
correction for family-wise error (FWE) and a minimum cluster size of
1400 voxels for two-sample comparisons. Between-group differences
in demographics and clinical parameters among or between groups of
this work are evaluated using an independent two-sample t-test with
the SPSS 16.0 package. (http://www.spss.com/). P b 0.05 is set as the
level of significance.

3.2. Feature extraction

The feature extraction procedure based on VBM plus DARTEL
analysis is applied to isolate the VOIs. The brain regions that show
significantly decreased gray matter volumes, obtained using VBM
plus DARTEL analysis, in AD patients relative to HC are segmented
using 3D masks. For the segmented regions, the MarsBaR region of
interest toolbox is employed (http://marsbar.sourceforge.net/) to
generate cluster-specific binary masks. The center coordinates of
each mask are defined by the local maximum revealed by VBM
plus DARTEL analysis on the whole brain. These masks are applied
to all the smoothed gray matter density volumes resulting from
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Fig. 3. 10-fold cross validation method used for parameter tuning and performance testing.
the VBM plus DARTEL analysis, to extract voxel values as raw
feature vectors.

3.3. Feature selection

The dimensionality of raw feature spaces in the VBM extracted
s-MRI voxel features is very high in comparison to the number of
samples. The feature vectors span a very small region in the high
dimensional vector space; consequently, a feature selectionmechanism
is desired in the post-processing. Feature selection can be considered in
the formof a standard dimensionality reduction via a standardmethod,
such as PCA. Alternatively, feature selection can be considered in the
form of choosing the most discriminative subset of the available
features in the raw feature vector. In this context, the proposedmethod
can be employed, as it is the combination of t-test feature ranking and
the Fisher Criterion,whichnot only reduces the dimensionality, but also
increases the discriminability.

3.3.1. PCA dimensionality reduction
Principal component analysis is a statistical dimensionality

reduction method that extracts a set of orthogonal principal
components (PCs) from an original dataset [62,63]. In this work, a
10-fold cross validation is used for measuring the performance of the
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classifiers. With136 samples, a 10-fold cross validation implied having
122 PCs through the PCA process. The number of PCs, h, used to
generate the projection vectors of the training and testing data was
chosen as h = 122.

3.3.2. The general framework of feature ranking
The aim of feature ranking is to measure the relevance of features

and class variables to aid in the selection of the most informative/
discriminative features, thereby speeding up the learning process
and promoting the performance of classifier models, especially when
the dimensionality of the datasets is very large [64]. Let D =
[X1, X2, …, XN]T be a dataset containing N samples, where Xi =
(xi1, xi2, …, xiM) is a vector ofM values and each value xij of this vector
shows a feature of that sample. The vector fj = (x1j, x2j, …, xNj)T is a
vector of values of a feature fj. On the other hand, D represents aN × M
matrix, where row i is the subject Xi and each column j is the feature fj.
A feature-ranking algorithm applied to dataset D generates an ordered
list of the features Ψ = [ f⁎

1, f⁎
2, …, f⁎

j], where the superscript denotes
the position in the ranked list of a feature f⁎ and this list is ordered by
reduction importance. Basedon feature ranking,we can select the top k
ranked features [ f⁎

1, f⁎
2, …, f⁎

k],k ≥ Mwherek canbedeterminedby the
user or adjusted experimentally [65]. In this paper, we use t-test
feature-ranking approach, as follows [66]:

T ¼ μc1−μc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

c1

nc1
þ σ2

c2

nc2

s ð1Þ

where T is the t-test value and μ c1, σc1
2 , nc1 and μ c2, σc2

2 , nc2 are the
mean, variance values, and number of samples of two classes c1 and
c2, respectively. The top informative features are selected by ranking
all features according to their T values.

3.3.3. Optimal number of features based on Fisher Criterion
In addition to the feature-ranking algorithm based on the

discriminative performance of the features, we propose the use of
an automatic approach based on the Fisher Criterion, J(w), given in
Eq. (2), to determine the number of top discriminative features,
Table 2
Clusters of gray matter atrophy (68 AD vs. 68 HC).

Location of peak voxels Hemisphere Cluster size
(no. of voxels)

Ta
(x

Hippocampus–Amygdala R 16069 26
Hippocampus–lateral globuspallidus L 16974 −
Inferior Parietal Lobule R 1454 55
Anterior Cingulate R 2032 8,

Note: Anatomical regions are derived from the Talairach Client program; L, heft hemisp
P b 0.01).
thereby reducing the dimensionality of the prospective feature
vectors [67,68].

J wð Þ ¼ wTSBw
wTSWw

ð2Þ

Where SB and SW represent the determinants of between class
and within class scatter matrices, respectively. For two classes c1 and
c2, the between class scatter and within class scatter matrixes are
defined as:

SB ¼ μc1−μc2ð Þ μc1−μc2ð ÞT ð3Þ

SW ¼
X
xi ∈ c1

xi−μc1ð Þ xi−μc1ð ÞT þ
X
xi ∈ c2

xi−μc2ð Þ xi−μc2ð ÞT ð4Þ

Where w = SW
−1(μ c1 − μ c2) and μ ci is the mean of data in each

class. This approach helps in adaptively determining the k top
discriminative features based on ranked t-test values using training
data in each fold instead of using a fixed k. Once the features are
ranked, the number of top ranked features iteratively increases from
1 to M (number of features) by calculating the respective Fisher
Criterion. The number of top ranked features maximizing the Fisher
Criterion is selected to be the optimal number of top ranked features
k. The framework of the proposed feature selection method is
illustrated in Fig. 2.

3.4. The SVM classifier

We classify AD patients apart from HCs by establishing the
classification model using the SVM algorithm. The SVM is powerful
classifier based on statistical learning principles. The SVM algorithm
has been used successfully in a number of recent application machine
learning studies [13,41,69–72]. During the training, SVM seeks the
optimal class-separating hyper-plane in the maximal margin. Various
kernels can be used during SVM training, such as linear, quadratic,
polynomial, and radial basis function (RBF). In this work, SVM is
performed using LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
lairach coordinates
,y,z)

MNI coordinates
(x,y,z)

Z value
(peak voxel)

T value
(peak voxel)

, −11, −9 27, −9, −15 Inf 10.94
25, −15, −8 −26, −13, −14 Inf 10.36
, −44, 25 56, −46, 25 7.22 8
42, 2 9, 47, 3 6.54 6.54

here; R, right hemisphere; MNI, Montreal Neurological Institute; (FWE-corrected a
t
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Fig. 5. Brain regions where there are significant gray matter reduction (atrophy) in 68 patients with AD and 68 age matched HC subjects (FWE corrected at P ˂ 0.01 and extend
threshold K = 1400).
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and the linear and nonlinear (RBF) kernels. A reliable measurement is
achieved by obtaining all performance results using the 10-fold cross
validation illustrated in Fig. 3. The RBFmodel has two parameters that
need to be selected: C (regularization) and γ (controls the kernel
width); the performanceof the classifierdepends on theseparameters.
The C and γ parameters are tuned using the training set, where two
cross validation (CV) procedures with grid search are combined. This
approach is performed to avoid unwarp bias in the estimation of
accuracies produced by the CVprocedure [73]. This procedure includes
two nested loops. In the outer loop, the data are split into K1 folds
(K1 = 10) at each step: one fold is used as a test and remaining K1 − 1
folds for training and validation. In the inner loop, training data (K1 − 1
folds) are further divided into K2 folds (K2 = 10). For each combination
ofCandγ, the classifier is trainedusing trainingdataand itsperformance
Fig. 6. Three-dimensional reconstruction of the brain showing gray matter atrophy
using VBM technique plus DARTEL. The regions of gray matter loss are shown from
anterior, posterior, right lateral, left lateral, inferior and superior view, respectively
The red region represents the region of gray matter loss.

Table 3
Raw feature vectors performance of atrophy clusters using 10 fold cross validation.

Linear SVM RBF SVM

ACC
(%)

SEN
(%)

SPE
(%)

AUC
(%)

ACC
(%)

SEN
(%)

SPE
(%)

AUC
(%)

VOI1 80.14 79.41 80.88 85.37 82.35 80.88 83.82 88.71
VOI2 77.20 77.94 76.47 84.93 79.41 76.47 82.35 87.69
VOI3 71.32 70.58 72.05 75.65 75.00 72.05 77.94 80.75
VOI4 69.85 69.11 70.58 77.82 70.58 73.52 67.64 77.99
VOIall 77.20 79.41 75.00 84.49 83.82 83.82 83.82 86.00
Average 75.14 75.29 74.99 81.65 78.23 77.34 79.11 84.22

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; SVM
.

Support Vector Machine; RBF, Radial Basis Function.
is assessed using the fold remaining for validation by estimating the
classification accuracy. One fold is left for validation and the remaining
K2 − 1 folds are used for training, combined with grid search to
determine the optimal parameters. In the grid search, the values ofC and
γ are variedamong the candidate sets {2−5, 2−4, …, 0, …, 219, 220} and
{2−15, 2−14, …, 0, …, 214, 215}, respectively. The inner loop is repeated
K2 times,measuring the accuracy of the classifier across theK2 folds for
every combination of C and γ. The optimal parameters that produce
maximum average accuracy across the K2folds are selected, and then
the class label of the test data is predicted, which is left out in the outer
loop using the selected optimal parameters. The above procedure is
repeatedK1 times by leaving adifferent fold as test datawhich are used
to compute the classification accuracy. For SVM with a linear kernel,
only theC parameter is tuned. Over-fitting is prevented by splitting the
data into 10 parts, where the training set gets 9 parts and the test set
gets 1 part. The data in the training set are used for parameter
estimation, whereas the data in the test set are used to measure the
performance. This process is repeated 10 times in the context of
10-fold cross validation, where no overlap of the testing sets occurs in
this process [74].

The classification results are calculated by means of accuracy
(ACC), sensitivity (SEN), specificity (SPE) and area under the curve
(AUC), based on 10-fold cross validation. These parameters are
defined as follows:

ACC ¼ TP þ TNð Þ
TP þ FP þ FN þ TNð Þ ð5Þ

SEN ¼ TP
TP þ FN

ð6Þ

SPE ¼ TN
TN þ FP

ð7Þ

where TP (thenumber ofADcorrectly identified asAD), TN (thenumber
ofHCpatients correctly identified asHC), FN (thenumber ofADpatients
incorrectly identified as HC), and FP (the number of HC patients
,



Table 4
PCA performance of atrophy clusters using 10 fold cross validation with 122 PCs.

Linear SVM RBF SVM

ACC
(%)

SEN
(%)

SPE
(%)

AUC
(%)

ACC
(%)

SEN
(%)

SPE
(%)

AUC
(%)

VOI1 79.41 82.35 76.47 86.80 81.61 86.76 76.47 88.27
VOI2 74.26 76.47 72.05 83.06 82.35 82.35 82.35 87.59
VOI3 70.58 73.52 67.64 72.48 69.85 69.11 70.58 78.33
VOI4 69.58 69.11 70.58 80.54 71.32 66.17 76.47 79.35
VOIall 77.20 79.41 75.00 87.49 85.29 86.47 83.82 88.74
Average 74.20 76.17 72.34 82.07 78.08 78.17 77.93 84.45

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; SVM,
Support Vector Machine; RBF, Radial Basis Function.
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incorrectly identified as AD) denote the number of true positive, true
negative, false negative, and false positive cases, respectively.

3.5. Data fusion among atrophy clusters

This paper introduces data fusion technique among atrophy
clusters (VOIs) to improve the performance of the proposed AD
classification method. The aim of the data fusion technique is to
integrate the data from two ormore distinctmultiple sources (vectors,
classifiers) to improve performance. In the current work, two different
fusion techniques are used: source fusion and score fusion.

3.5.1. Source data fusion
In the scheme of source data fusion, the top features selected based

on our approach, described in Section 3.3, from different VOIs, are
concatenated into a single feature vector. Assuming fv1, fv2, …, fvn are
feature vectors generated using proposed feature selectionmethod for
each atrophy cluster, the feature vector fusion (FVF) is then:

f vf ¼ f v1; f v2;…; f vn½ �
1�
Xn
i¼1

mi

ð8Þ

wheremi is the vector length for fvi. This concatenated feature vector
is then used for classification. The source data fusion relies on
procedures for feature contraction.

3.5.2. Score data fusion
Score data fusion includes multiple classifiers and a combination

method. The number of classifiers is determined based on the
number of atrophy clusters obtained using the VBM plus DARTEL
approach in the pre-processing. In this work, the majority voting
Fig. 7. Fisher scores for the respective rank
method is employed as the score data fusion technique. Majority
voting is one of the most versatile combination methods, because of
its simplicity and performance on real data [75]. The adopted score
data fusion framework is illustrated in Fig. 4.

4. Experimental results and discussion

This section considers the experimental results obtained through
the pre-processing phase using VBM plus DARTEL analysis on 3D
T1-weighted MR imaging, as an indicator disclosing the significance
of decreased gray matter volumes in AD contributing to VOIs. The
performance of the proposed feature selection method based on
t-test ranking and the Fisher Criterion is also measured. Finally, the
performance results obtained through data fusion are presented and
analyzed. The performance of the classification using SVM classifiers
with 10-fold cross validation is reported for the following cases:
1) performance of raw feature vectors directly extracted from VBM,
2) performance of the PCA data reductionmethod, 3) performance of
proposed t-test feature-ranking technique using the optimal number
of top features based on the Fisher Criterion, 4) performance of the
proposed data fusion techniques among atrophy clusters of GM. The
ACC (%), SEN (%), SPE (%) and AUC (%) performance metrics are used
for the performance assessment.

4.1. Differences in gray matter volume between ADs and HCs

The gray matter volume atrophy differences between patients who
suffer fromADandHCare summarized inTable2. Thegroupcomparison
by VBM plus DARTEL reveals a significant decline in GM volume in the
right hippocampus (Talairach coordinates 26,−11,−9,x,y,z;z = Inf),
left hippocampus (−25,−15,−8,x,y,z;z = Inf), right inferior parietal
lobule (55,−44,25,x,y,z;z = 7.22), and right anterior cingulate
(8,42,2,x,y,z;z = 6.54) (see Table 2 and Fig. 5 for more details) in
patients with AD when compared to the HCs. Fig. 6 illustrates six
three-dimensional views of group comparison representing relative
gray matter atrophy in patients with AD compared to HCs. The voxel
locations of the significant atrophy regions are used as 3D VOI masks.
These 3D VOI masks are applied to the gray matter density volume
results from the segmentation step in the VBM plus DARTEL analysis in
order to extract voxel values into raw feature vectors for use in feature
selection and classification. Based on these atrophy clusters, we define
five different VOIs as follows:

i. VOI1 includes the right hippocampus and amygdala regions.
The center of this mask is at Talairach coordinates x = 26,
y = −11, z = −9. VOI1 contains 16,069 voxel values as a
raw feature vector.
ed features in fold 1 training of VOIall.



Fig. 8. t-test (T) values for the respective ranked features in fold 1 training of VOIall.

Fig. 9. Classification accuracies of linear SVM with respect to different numbers of features selected in fold 1 training of VOIall.
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ii. VOI2 includes the left hippocampus–lateral globus pallidus
regions. The center of this mask is at Talairach coordinates
x = −25, y = −15, z = −8. VOI2 contains 16,974 voxel
values as a raw feature vector.

iii. VOI3 includes the right inferior parietal lobule regions. The center
of this mask is at Talairach coordinates x = 55, y = −44, z =
25. VOI3 contains 1454 voxel values as a raw feature vector.
Fig. 10. Classification accuracies of linear SVM with respect to different numbers of top ranked features selected in fold 1 training of VOIall.
iv. VOI4 includes the right anterior cingulate regions. The
center of this mask is at Talairach coordinates x = 8, y =
42, z = 2. VOI4 contains 2032 voxel values as a raw
feature vector.

v. VOIall includes all regions of gray matter loss (atrophy). VOIall
contains all four clusters above, with 36529 voxel values as a
raw feature vector.



Table 5
Performance results of the proposed feature selection method.

Linear SVM RBF SVM

ACC
(%)

SEN
(%)

SPE
(%)

AUC
(%)

ACC
(%)

SEN
(%)

SPE
(%)

AUC
(%)

VOI1 91.17 92.64 89.70 96.9 90.44 89.70 91.17 95.07
VOI2 92.64 91.17 94.11 97.93 94.11 92.64 95.58 98.74
VOI3 76.47 73.52 79.41 84.93 76.47 75.00 77.94 84.66
VOI4 79.41 75.00 83.82 86.67 80.14 73.52 86.76 89.29
VOIall 94.11 95.58 92.64 98.33 92.64 94.11 91.17 98.13
Average 86.76 85.58 87.93 92.95 86.76 84.99 88.52 93.17

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; SVM
Support Vector Machine; RBF, Radial Basis Function.

Table 6
Performance of proposed data fusion technique among atrophy clusters of GM.

Linear SVM

ACC (%) SEN (%) SPE (%)

Source Concatenation 95.58 94.11 97.05
Majority Voting 96.32 94.11 98.52

Note: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area Under Curve; SVM
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,

Note that the center of the mask in the Talairach coordinates
corresponds to the center of the mass of the respective 3D VOI.

4.2. Performance of the raw feature vectors

The complete MRI dataset consists of 68 AD and 68 HC samples.
The ACC, SEN, SPE, and AUC that were obtained by 10-fold cross
validation using the SVM classifier (Linear and RBF kernels) on raw
feature vectors from five different VOIs are shown in Table 3. The
results indicate that the average performance, in terms of ACC, SEN,
SPE, and AUC obtained from five atrophy clusters using RBF SVM, is
marginally better than Linear SVM. The RBF kernel is generally more
flexible than the linear kernel so it generally can model more
functions with its function space.

4.3. Performance of the PCA method

The PCA based data reduction method is utilized to extract raw
feature vectors. For each dataset, the features extracted are reduced
to lower dimensional features using PCA, with 122 PCs. Table 4
presents the classifier performance obtained using 10-fold cross
validation for SVM classifiers in terms of ACC, SEN, SPE, and AUC. The
average accuracy of feature vectors with 122 PCs for linear and RBF
SVM classifiers was74.20% and 78.08%, respectively, while the
average accuracy using the raw feature vectors without dimension-
ality reduction was 75.14% and 78.23%, respectively. As observed,
PCA introduces dimensionality reduction and generates comparable
performance with the raw data.

4.4. Performance of the proposed feature selection using t-test ranking
and the Fisher Criterion

As proposed in Section 3.3.3, the feature selection technique uses
the t-test for ranking the features. The Fisher Criterion is used to
determine the optimal number of top features. The Fisher scores for
the samples in the training set from fold 1 of VOIall are plotted in
Fig. 7 for the top 250 ranked features. As Fig. 7 shows, the maximum
Fisher score is located at 111, which means that 111 top-ranked
features are to be used in the classification process. Typical Fisher
scores are observed between 30 and 150 for all folds of 5 different
, Sup
VOIs. Fig. 8 shows all of the t-test values for the same data. The
contribution of features on the accuracy is studied separately and
plotted in Fig. 9 with linear SVM. As expected, the contribution of the
features in relevance to their t-test values is highly correlated. A
higher t-test rank implies higher performance of the respective
feature. A logarithmic scale is used to cover the entire feature space.
Additionally Fig. 10 is included to show the improvement in the
accuracy obtained by using progressive inclusion of the ranked
features in the feature vector with linear SVM. The performance
increases with the increased number of ranked features used in the
classification. However, after a certainmaximum, which corresponds
to 111 top ranked features in this fold, the performance does not
increase further. The SVM-based classifiers are used to observe the
classification performance of the selected feature vectors from five
different VOIs. The results of classifiers are presented in Table 5.
Examination of Tables 3 and 5 confirms that the proposed feature
section method significantly improves the prediction capability of
AD subjects when compared to prediction using raw features. The
average accuracy for raw data for linear and RBF SVM classifiers is
75.14% and 78.23%, respectively, while the average accuracy for the
proposed feature selection method is 86.76% and 86.76%, respec-
tively. The improvement is around 10% for all performance
indicators: ACC, SEN, SPE, and AUC.

4.5. Performance of data fusion among atrophy clusters

The performance improvement aided by data fusion of five
clusters is shown in Table 6. The performance of both types of data
fusion techniques is around 10% higher than the average perfor-
mance obtained with individual clusters. The performance of the
majority voting (score fusion) approach is always higher than or
equal to the performance of the source concatenation (source
fusion) approach. Table 6 shows that data fusion among atrophy
clusters of GM volumes integrates information by improving the
classification performance in all terms.

4.6. Performance comparison to the other methods

Several recent studies have reported classification results to
distinguish AD and HC based on MRI. Zhang et al. [8] used
multimodal classification of AD based on the combination of MRI,
CSF, and PET. They reported an ACC of 86.2% in the classification of
AD/HC by MRI image modality. They also achieved a high ACC
performance of 93.2% by combining the MRI, CSF, and PET results.
Westman et al. [12] reported an ACC of 87% from MRI data and
increased it to 91.8% by combining MRI data with CSF measures.
Zhou et al. [40] employed FreeSurfer software to calculate 55
volumetric variables from MRI. They reported an ACC of 78% for MRI
data and 92.4% for combining MRI data with MMSE. In the present
work, only the MRI modality with 136 samples from the ADNI
dataset was used, with highly comparable results to those reported
in other MRI-only studies. The performance of the proposed feature
selection and data fusion techniques outperforms the alternative
techniques given in Table 7. The detailed parameters of classification
performance with different methods on MRI data are also provided
RBF SVM

AUC (%) ACC (%) SEN (%) SPE (%) AUC (%)

97.52 95.58 94.11 97.05 97.31
99.93 95.59 94.11 97.05 99.82

port Vector Machine; RBF, Radial Basis Function.



Table 7
Supervised classification results of Alzheimer’s disease and healthy control subjects on MRI data.

Author Imaging Modality Source of data AD/HC Validation method ACC (%) SEN (%) SPE (%) AUC (%)

Zhang et al., 2011 [8] MRI ADNI 51/52 10 Fold 86.2 86.0 86.3 –
Zhang et al., 2011 [8] MRI + CSF + PET ADNI 51/52 10 Fold 93.2 93.0 93.3 –
Westman et al., 2012 [12] MRI ADNI 96/111 10 Fold 87 83.3 90.1 93.0
Westman et al., 2012 [12] MRI + CSF ADNI 96/111 10 Fold 91.8 88.5 94.6 95.8
Zhou et al., 2014 [40] MRI Private 127/59 2 Fold 78.2 68.5 81.7 –
Zhou et al., 2014 [40] MRI + MMSE Private 127/59 2 Fold 92.4 84.0 96.1 –
Kloppel et al., 2008 [32] MRI (Group I) Private 20/20 Leave-one-out 95.0 95.0 95.0 –
Kloppel et al., 2008 [32] MRI (Group II) Private 14/14 Leave-one-out 92.9 100 85.7 –
Kloppel et al., 2008 [32] MRI (Group III) Private 33/57 Leave-one-out 81.1 60.6 93.0 –
Hinrichs et al., 2011 [41] MRI + PET ADNI 48/66 10 Fold 87.6 78.9 93.8 –
Hinrichs et al., 2011 [41] MRI + PET + CSF + APOE + Cognitive Scores ADNI 48/66 10 Fold 92.4 86.7 96.6 –
Proposed method MRI ADNI 68/68 10 Fold 96.32 94.11 98.52 99.93

261I. Beheshti, H. Demirel / Magnetic Resonance Imaging 34 (2016) 252–263
in Table 7.The results reported in Table 7 show that the performance
of the proposed system is highly competitive for the performance
terms including ACC, SPE, and AUC when compared to the other
systems reported in the literature. The only exception is SPE, where
the performance of the proposed system is lower than for results
reported by Kloppel et al. (2008) [32] for groups I and II. Our results
are highly competitive with the rest of the systems. The performance
improvement over the previous work, shown in Table 7, can be
attributed to the automatic statistical feature-selection method
based on the combination of t-test feature ranking and the Fisher
Criterion of the VOI. Due to t-test ranking, the proposed feature
selection method is capable of sorting discriminative features in
descending order. The optimal dimension of the feature vector is
adjusted by maximizing the Fisher Criterion in the training dataset.
Finally, data fusion techniques among gray matter atrophy clusters
provide further improvement on the AD classification performance.

5. Conclusion

This paper proposes a feature selection method using t-test-based
feature ranking, which is used for the classification of AD. The optimal
size of the selected features is determined using the Fisher Criterion,
which maximizes the class separation between AD and HC. The feature
selection is applied to all voxels that pass through masks modeled by
overall atrophy clusters, determined by using VBM analysis. Linear and
RBF kernel-based SVM classifiers are used for the classification of the
extracted feature vectors after the proposed feature selectionmethod. A
performance improvement is also proposed by applying data fusion
among the individual atrophy clusters, as well as the overall atrophy
clusters. Standard data fusion techniques, such as source and score
fusion, are used to obtain improved performance in the classification
of AD. The performance of the proposed system is measured on
136 subjects (68 AD and 68 HC) from the ADNI dataset using 10-fold
cross validation. The experimental results show that the performance of
the proposed approach for ACC, SPE, and AUC is highly competitivewith
the state-of-the-art techniques usingMRI data reported in the literature.
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